Table Of Contents

INTRODUCTION
5

PART I: THE SKY
7
How The Sky Moves
8
Celestial Coordinates
10
Estimating Angular Distances in the Sky
13
How To Read A Star Chart
14
The Sky From March To June
16
 Northern Hemisphere
 16
 Southern Hemisphere
 18
The Sky From June To September
19
 Northern Hemisphere
 19
 Southern Hemisphere
 21
The Sky From September To December
23
 Northern Hemisphere
 23
 Southern Hemisphere
 24
The Sky From December To March
26
 Northern Hemisphere
 26
 Southern Hemisphere
 27

PART II: EQUIPMENT AND TECHNIQUES
29
Telescope Basics
30
 Telescope Specifications: Aperture vs. Magnification
 30
Types of Telescopes
32
 Refractors
 32
 Reflectors
 34
 Compound Telescopes
 35
Telescope Mounts
38
 Alt-Azimuth Mounts
 38
 Equatorial Mounts
 39
 Go-To Mounts
 40
Binoculars For Astronomy 41
 Binocular Basics 41
Eyepieces 44
 The Basics 44
 Wide-Field Eyepieces 45
 Planetary Eyepieces 46
 Barlow Lenses 48
Finders 48
 Magnifying Finders 49
 Non-Magnifying Finders 50
Light Pollution Filters 53
Averted Vision 55
Dark Adaptation 57
Learning To See 58
Evaluating Atmospheric Conditions 59
Useful Math for Stargazers 61
How To Stay Interested in Astronomy 62

PART III: A LITTLE SCIENCE 66
Stars: A Primer 67
 Star Colors 67
 The HR Diagram and The Evolution of Stars 69
Measuring Brightness: The Magnitude Scale 70
Variable Stars 72
Double and Multiple Stars 74
Dark Nebulae 75
Diffuse Nebulae 76
Open Star Clusters 78
Planetary Nebulae 79
Globular Star Clusters 81
Galaxies 82
Designations of Stars and Deep-Sky Objects 87
 Stars 87
PART IV: SKY TOURS

TOUR I: DECEMBER - MARCH
M1 - The Crab Nebula
Sirius, The “Dog Star”, and the “Pup”
Star Cluster M41
NGC 2362: The Tau Canis Majoris Cluster
M42: The Great Orion Nebula
Sigma Orionis
Castor (α Geminorum)
The Clown Nebula
Messier 35
Beta Monocerotis

TOUR 2: MARCH - JUNE
The “Beehive” Star Cluster
Iota Cancri
NGC 4565: The Flying Saucer Galaxy
M64, The “Black-Eyed” Galaxy
M104, The “Sombrero” Galaxy
M87, A Massive Elliptical Galaxy
Cor Caroli (the “Heart of Charles”)
“La Superba”
The “Jewel Box” Cluster

TOUR 3: JUNE - SEPTEMBER
Dual Galaxies: M81 & M82
The Southern Pinwheel
The Dark Doodad
The Veil Nebula
Albireo
70 Ophiuchi
Rasalgethi (Alpha Herculi)

Secrets of the Deep Sky
M13, The Hercules Globular Cluster 144
M11, The “Wild Duck Cluster” 146
The False Comet Cluster 148
M17, The Swan Nebula 150
The Castaway Cluster 152
The Dumbbell Nebula 154

TOUR 4: SEPTEMBER - DECEMBER 156
47 Tucanae 157
Mira, The “Wonderful Star” 158
Algol, The “Demon Star” 161
The Double Cluster 163
The “Little Andromeda” Galaxy 165
Messier 15 168
The Saturn Nebula 169
The “E.T.” Cluster 171
M33, The Triangulum Galaxy 174

EPILOGUE: WHERE TO GO FROM HERE 176
Introduction

Most new stargazers aim their telescopes at bright, nearby celestial objects like the moon, Jupiter, Mars, and Saturn. This is perfectly natural, of course, since these objects are easy to find and present a wealth of detail in a small telescope. And these bright sights, along with others in the solar system, can easily provide a lifetime of exploration and enjoyment for a backyard astronomer. If that’s all there was to see, amateur astronomy would still be a challenging and worthy pastime.

Of course, there is more to see beyond our solar system... a whole universe of sights of stunning beauty and infinite variety. That’s why it’s not long before a backyard astronomer feels the deep desire to look beyond our own celestial backyard into the deep sky, the realm of our own Milky Way galaxy and beyond into the reaches of intergalactic space.

But finding and seeing faint objects in deep space is a little more challenging than observing the moon or Saturn. Many new stargazers are intimidated by finding faint galaxies and nebulae and star clusters with their telescopes. What’s worse, upon finding these sights, many beginners are disappointed by the appearance of these objects because they haven’t learned to see fine detail through a telescope. And they may not appreciate the awesome natural forces at work in the dim objects in their field of view of their telescope.

This book helps solve these problems. It presents the basics of how and where to find and observe faint objects in the deep sky beyond our solar system, including galaxies, nebulae, star clusters, and multiple and peculiar stars. And it goes through a little of the science behind these objects, so an observer’s imagination and intellect can fill in the details a telescope leaves out. A dim, tiny smudge in your eyepiece is so much more impressive when you know it’s the sum total of the light from a trillion stars.

For beginning stargazers, or those whose knowledge has lapsed from years away from the telescope, the first sections of this book start out with the basics of the layout and apparent movement of the sky. It covers the main points and planes of reference and the system of celestial coordinates used to locate and specify the positions of objects in the sky. Some tips are also given about how to read star maps, and how to estimate angular distances in the sky. Then, short tours of the night sky get the reader oriented to
what constellations are visible in each season in both the north and south hemispheres, and what types of deep sky objects are generally visible at each time of year.

The next section presents basic information on equipment for the deep-sky observer: telescopes, binoculars, filters, finders, and mounts. And since the best equipment in the world isn’t worth much unless the observer has the skill to use it, this section presents the key techniques for seeing faint objects in a telescope.

Then it’s time for a bit of science. A little about variable stars and binary stars and the two main types of star clusters. How stars form and evolve and die. How different sorts of nebulae generate light. And a little about galaxies and galaxy shapes. This isn’t a comprehensive view, just enough to get a taste of the physical nature of the main types of deep sky objects.

The last section of the book presents detailed summaries and tours of more than 40 deep-sky objects that present excellent views in a small telescope, or in some cases, simply with binoculars or the unaided eye. Almost all of the objects can be seen from most populated areas of the world; a few, as indicated, can be seen only from the northern or only from the southern hemisphere. Objects of all types are chosen: open and globular star clusters, spiral and elliptical galaxies, double, triple, and multiple stars, pulsating and eclipsing variable stars, and diffuse and planetary nebulae where stars are born and die. They’re all here. The list is but a short sampling of the thousands of deep-sky objects (or DSO’s) visible to backyard astronomers, but it gives a taste of what can be seen by a skillful and enthusiastic observer with modest instruments.

Observing the wonders of the deep sky takes a little effort. But it’s worth it. If you read this book carefully, and get out with your telescope to practice what you learn, you will develop a level of expertise that few can match, and see sights that most can scarcely imagine.